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Abstract

Handling large streaming data is essential for various applications
such as network traffic analysis, social networks, energy cost trends,
and environment modeling. However, it is in general intractable to
store, compute, search and retrieve large streaming data. This pa-
per addresses a fundamental issue, which is to reduce the size of large
streaming data and still obtain accurate statistical analysis. As an
example, when a high-speed network such as 100 Gbps network is
monitored, the collected measurement data rapidly grows so that poly-
nomial time algorithms (e.g., Gaussian processes) become intractable.
One possible solution to reduce the storage of vast amounts of mea-
sured data is to store a random sample, such as one out of 1000 network
packets. However, such static sampling methods (linear sampling) have
drawbacks: (1) it is not scalable for high-rate streaming data, and (2)
there is no guarantee of reflecting the underlying distribution. In this
paper, we propose a dynamic sampling algorithm that reduces the
storage of data records in exponential scale, and still provides accurate
analysis of large streaming data. We also build an efficient Gaussian
Process with the fewer samples. We apply this algorithm to large data
transfers in high-speed networks, and show that the new algorithm
significantly improves the efficiency of network traffic prediction.
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1 Introduction

Large streaming data is an essential part of science and engineering such as
scientific computing and network communications. However, large stream-
ing data is intractable to store, compute, search and retrieve. This paper
addresses the fundamental issue of reducing the volume of large streaming
data while maintaining accurate data analysis.

As a running example, suppose that we analyze network traffic measure-
ment data. In high-speed networks, in-depth network analysis is challenging.
The gathered traffic measurement data rapidly grows so that even polyno-
mial time algorithms become intractable. In the context of traffic monitor-
ing, one possible solution to reduce the size of the collected measurements
is to store a random sample, such as one out of 1000 network packets Claise
et al. [2009]. However, such static sampling is not scalable, and has no
guarantee of reflecting the true traffic pattern. One may also think to use
exact or approximate data compression techniques such as spectral analy-
sis. However, existing data compression methods require using global data.
Unfortunately, analyzing global data is a not practical problem for large
streaming data.

In probability theory, it is shown that the joint probability of an infinite
sequence of random measures can be represented by conditional iid (indepen-
dent identically distributed) random measures, when they are exchangeable
with each other de Finetti [1931]; de Finetti [1974]; Aldous [1982]. Further-
more, it is also known that an infinite (or finite) sequence of exchangeable
random measures is contractible, which means that the joint probability
can be exactly (or approximately) represented by a subset of the sequence
Ryll-Nardzewski [1957]. The exchangeability is one of the key principles in
machine learning and probabilistic inference models including variational in-
ference Jordan et al. [1999]; Wainwright and Jordan [2008] and nonparamet-
ric Bayesians Ferguson [1973]; Teh et al. [2006] and relational probabilistic
inference Carbonetto et al. [2005]; de Salvo Braz et al. [2005]. Such mod-
els have various uses in many applications such as social networks, natural
language processing, video retrieval and surface water modeling.

This paper proposes a dynamic sampling algorithm, which reduces re-
dundant network traffic in large streaming data by exploiting the exchange-
ability of measures. An important question is to determine the appropriate
sampling rate. Certainly, sampling rates change over time based on the
data pattern. We may have to store more data logs when we are uncertain
about incoming data, e.g., at the beginning. However, we may reduce the
amounts of data logs when we know the redundancy. We reduce the amount
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of data logs by exploiting two properties: (1) redundancies of data in time
series; and (2) redundancies of data distributions. If data distributions of
two blocks of data were similar, it would be reasonable to store less samples
because the next block would be similar to the previous block with a high
probability. In addition, if we know that the data distribution is concen-
trated only on specific values (e.g., high entropy), we can also reduce the
sampling rate.

In addition to the dynamic sampling method, we demonstrate how our
data reduction method can be used to improve the efficiency of a polynomial-
time data analysis algorithm with an example of a Gaussian process. Many
of previous sparse Gaussian processes have been focused on building a rep-
resentative set for the given process Smola and Schökopf [2000]; Csató and
Opper [2002]. The intuition is to construct a sparse (low-rank) covariance
matrix. We show that a good alternative is to use relational Gaussian pro-
cesses Chu et al. [2006]; Xu et al. [2009]. We provide a new way to build
efficient relational Gaussian processes.

2 Motivations and Background

2.1 Processing Large Streaming Data

Two of main challenges of dealing with large streaming data are the storing
and processing the data. In many cases, the large volume of data is brought
about by improvements in technology such as large bandwidth for data
transfers and high resolution sensing devices. As an example, network traffic
information from a high-speed network gathers multiple terabytes per day.
As shown in Figure 1 (a), the traffic information may be concentrated on a
specific time and throughput range (darker area includes 90% of traffic and
thus storage).

However, it may not necessary to store and process all network traffic.
For the purpose of analyzing traffic throughput patterns, we can avoid han-
dling (noisy) redundant data. As shown in Figure 1 (b), when each traffic
unit is binary size (0 or 1) and iid, the sizes of packets can be modeled
by a single Bernoulli parameter θ. However, in reality, such traffic data is
not iid. Instead, the order of traffic can be (locally) exchangeable. In the
next section, we will define exchangeable random variables and Gaussian
processes, and they will be used to explain our new models, which we refer
to as Bayesian Online-Locally Exchangeable Measures (BO-LEMs). These
models help us solve the network traffic prediction problem addressed in this
paper.
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Figure 1: (a): Traffic patterns of a high-speed network router in ESnet. The
regions with darker color represent higher network traffic concentrations.
This figure represents network transfers as a density at a particular time (x-
axis) and a throughput (y-axis). The yellow, red and black colored regions
represent small, moderate and large numbers of transfers, respectively. At
a specific time step, the figure represents the network transfers. As an
example, two regions at Dt and Dt+1 are network transfer profiles next to
each other. As can be seen, the two regions are similar. Meanwhile, two
regions at Dt′ and Dt′+1 are similar. (b): An illustration of generating iid
samples from Bernoulli distribution.

2.2 Exchangeable Random Variables

A set of random variables x1,· · · ,xn is exchangeable when the variables sat-
isfy the following property:

p(x1, · · · , xn) = p(xπ(1), · · · , xπ(n)), (1)

where π(.) is a permutation of n. The exchangeability assumption has been
used in scientific experiments. Suppose that x1,· · · ,xn are specific biological
response in human subjects when a particular drug is injected. It is rea-
sonable to say that the n random variables are locally exchangeable when
human subjects have the same biological conditions (e.g., ethnic, gender,
dose-level) [1]. Here, the variables of interests are sizes of incoming pack-
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ets and throughputs (duration/size) of TCP sessions. We assume that the
measures (sizes and throughputs) of network packets are exchangeable.1 In
theory, exchangeable random variables of an infinite sequence are identically
distributed (but not necessarily independent). Formally, de Finetti proved
the following property [2],

p(x1, · · · , xn) =

∫
θ∈Θ

∏
i

p(xi|θ)p(θ)d(θ) (2)

That is, n random variables are conditionally independent given the
parameter θ of underlying (identical) distribution. In case of the binary
variables, θ is the Bernoulli parameter such that p(xi = 1|θ) = θ and
p(xi = 0|θ) = 1 − θ. The main benefit of the de Finettie’s theorem is
the factorization of the joint probability of n random variables. The joint
probability is now represented as the product of conditionally identically
distributed random variables.

3 Models: Exchangeable Blocks

Our model focuses on adjusting the amount of data for future analysis. In
our model, we assume that randomly measured samples from streaming data
sources are locally exchangeable. That is, we can change the order of two
measures observed within a short time, e.g., seconds. However, if the two
measures are observed with a long time delay, e.g., hours, we do not assume
that the two measures are exchangeable. This section describes our dynamic
models with exchangeable blocks.

3.1 Locally Exchangeable Measures (LEMs)

Suppose that there is a sequence of n discrete random variables xi, where
i is the index of the variable, X = (x1, · · · , xn). Our model splits the
sequence into blocks, where each block (Xi) includes N measurements, Xi =
(x(i−1)N+1, · · · , xiN ).2

We assume that random variables in each block Xi are exchangeable, and
each block is called as a Locally Exchangeable Measure (LEM). Then, we
assume that N random variables are exchangeable, when the two measures

1As shown in our experiments, network traffic data for some routers can be represented
by conditionally iid samples. Thus, it strongly suggests that measures in a long sequence
are in fact locally exchangeable each other.

2We assume that the block size N is given. In Section 7.2, we also provide an empirical
way to find the N..
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are included in a block Xi = (x′1, · · · , x′N ). This leads to the following
property with a given input sequence:

p(x′1, · · · , x′N ) = p(x′π(1), · · · , x
′
π(N)). (3)

Two LEMs Xi and Xj can be exchangeable as well. This is represented by
an indicator function IEX(, ):

IEX(Xi, Xj) = IEX(i,j) =

{
1 p(Xij) = p(Xπ(ij))

0 p(Xij) 6= p(Xπ(ij))
(4)

where IEX(i,j) is a shorthand notation; Xij =XiXj =
(
xi1, · · · , xiN , x

j
1, · · · , x

j
N

)
= (x1, · · · , x2N ) and Xπ(ij) =

(
xπ(1), · · · , xπ(2N)

)
.

Lemma 1 Given two LEMs Xi and Xj, if at least one pair of random
variables (x∈Xi, x

′∈Xj) is exchangeable with each other, then all random
variables in Xi and Xj are exchangeable.

Proof Let the joint probability be p(Xi, Xj)=p(xi,1, · · ·, xi,N , xj,1, · · ·, xj,N ).
Without loss of generality, suppose that xi,N and xj,N are exchangeable with
each other, p(xi,1, · · ·, xi,N , xj,1, · · ·, xj,N ) = p(xi,1, · · ·, xj,N , xj,1, · · ·, xi,N ).
For an arbitrary pair of two variables x′i∈Xi and x′j∈Xj (xi 6=xi,N , xj 6=xi,N ).

p(xi,1, · · ·, x′i, · · ·, xi,N , xj,1, · · ·, x′j , · · ·, xj,N )

=p(xi,1, · · ·, xi,N , · · ·, x′i, xj,1, · · ·, xj,N , · · ·, x′j)

=p(xi,1, · · ·, xi,N , · · ·, x′j , xj,1, · · ·, xj,N , · · ·, x′i)

=p(xi,1, · · ·, x′j , · · ·, xi,N , xj,1, · · ·, x′i, · · ·, xj,N ).

Thus, x′i and x′j are exchangeable with each other.

4 Dynamic Bayesian Inference with LEMs

4.1 Posterior Distribution by LEMs

Predictions p(Xt+1) can be formulated by the indicator variables IEX and
their marginalization:

p(Xt+1|X1:t)=
∑
IEX

p(Xt+1|X1:t, IEX(1:t))p(IEX(1:t)|X1:t)

=
∑
IEX

p
(
Xt+1|X(iEX)

1:t

)
p(IEX |X1:t),
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where IEX(1:t) refers to a set of maximum partitions3 of exchangeable LEMs
among X1:t. A partition iEX ∈ IEX(1,t) indicates which elements are ex-
changeable with each other, e.g., iEX = {{t, t−1, t−3}, {t−2, t−4, t−5}, · · · }.
X

(iEX)
1:t refers to a projection of X1:t according to the partition iEX .

The important part is to predict the exchangeability of the new LEM,
Xt as follow.

p(IEX(1:t), X1:t)=
∑

IEX(1:t−1)

p
(
IEX(∗:t), IEX(1:t−1), Xt, X1:t−1

)
=

∑
IEX(1:t−1)

p
(
IEX(∗:t), Xt|IEX(1:t−1), X1:t−1

)
·p
(
IEX(1:t−1), X1:t−1

)
=

∑
iEX∈IEX(1:t−1)

p
(
IEX(∗,t)|IEX(1:t−1)

)
︸ ︷︷ ︸

Transition Model

· p
(
Xt|X(iEX)

1:t−1

)
︸ ︷︷ ︸
Predictive Model

· p
(
IEX(∗:t−1), X1:t−1

)
︸ ︷︷ ︸

prior belief

In the following, we explain the details of the Transition Model, p
(
IEX(∗:t)|IEX(1:t−1)

)
,

and the Predictive Model (PM ), p
(
Xt|X(iEX)

1:t−1

)
.

4.2 The Transition Model p(IEX(∗,t)|IEX(1:t−1))

To handle the transition models, we provide two models based on Bernoulli
processes and Additive Markov Chains.

4.2.1 Bernoulli Processes for the Transition Model

As a simple baseline model, we can use the Bernoulli process. The prediction

p
(
IEX(∗,t)|IEX(1:t−1)

)
is simplified to p

(
IEX(t,t−1)|IEX(t−1,t−2), · · · , IEX(2,1)

)
.

The Bernoulli process predicts IEX(t,t−1), which indicates that a new LEM
Xt is exchangeable with the previous one Xt−1. The Bernoulli parameter
pB is the sum of all events divided by the size of events,

p
(
IEX(t,t−1)=1

)
=

∑
1≤i≤t−2

IEX(i+1,i)

t−2
,

p
(
IEX(t,t−1)=0

)
= 1− p

(
IEX(t,t−1)=1

)
3The maximum partitions are partitions of largest size as long as LEMs in each partition

are exchangeable.
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However, this model may not handle the dynamics correctly. Thus, we use
the following additive Markov chains.

4.2.2 Additive Markov Chains for the Transition Model

To take dynamic changes into account, an additive Markov chain is built
where the exchangeable measures in consecutive blocks are correlated with
each other.

p(IEX(∗,t)|IEX(1,t−1)) ∝
∑

i=1,··· ,t−1

IEX(i,t) · exp
(
− t− i

σ2

)
s.t. IEX(i,t) ∧ IEX(i,j) → IEX(j,t).

Thus, when all t−1 previous LEMs are exchangeable, Xt is also exchangeable
with the following probability:

p(IEX(t,t−1)=1|IEX(t−1,t−2)=1, · · ·, IEX(2,1)=1)

∝
∑

i=1,··· ,t−1

exp

(
− t− i

σ2

)

When none of m previous LEMs are exchangeable, Xi is exchangeable with
a certain previous LEM at Xl with probability c · exp(−l/σ2). If the model
has the larger σ, then a longer sequence of random variables will be ex-
changeable. If the model has the smaller σ, it will fluctuate often and make
more nonexchangeable blocks.4 When there is a long sequence of exchange-
able LEMs, a new LEM Xt is more likely to be included in the group of
exchangeable LEMs.

4.3 The Predictive Model (PM) p(Xt|X iEX
1:t−1)

4.3.1 Kolmogorov-Smirnov test

Now, we focus on computing the exchangeability of the current input Xt

and each of existing partitions XiEX
1:t−1.

One distinctive property of exchangeable random variables is that one
can interchange the order of random variables when representing the joint
probability distribution. In case of discrete variables, the joint probability
of X is proportional to the value histogram of X, p(X) ∝ p(hX), where
hX = (h1, · · · , hk) and hi = | {x|x = i, x ∈ X} |. In general, with continuous
variables, the empirical cumulative density function (ecdf) are used as a

4The parameter c and σ2 are estimated by cross-validation.
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generalized version of the value histogram. Given the ecdf FX′ of an existing
partition and the ecdf FXt at time t, we use the Kolmogorov-Smirnov test
[4,5] (K-S test) to measure the distance of two histograms. The K-S test
indicates whether the two non-parametric distributions are sampled from
the same distribution. If X ′ and Xt are exchangeable, they are expected to
pass the K-S test. As shown in Figure 3, the test score from K-S test (KS)
is the maximum absolute difference between two ecdfs. Formally, the K-S
test is represented as follow:

KS(X ′, Xt) = max
l

(|FX′(l)− FXt(l)|) ,

where FX(l) = 1
N

∑
xi∈Xs.t.
1≤i≤|X|

1{xi ≤ l}.

Figure 2: An example of the Kolmogorov-Smirnov test. In each graph, the
two lines (the blue and the red) show the empirical distributions of two
example LEMs next to each other in time. The figure on the left shows
clearly a gap. In case that there are multiple gaps, the K-S test score is
calculated for the largest gap between two empirical distributions. The left
graph shows an example that the null hypothesis is rejected because the
K-S test score is large (KS(X ′, Xt)=0.1426). The right graph shows that
the null hypothesis is accepted because the K-S test score is small enough.

The null hypothesis (H0) is that the two histograms (X ′ and Xt) do
not follow the same distribution. When KS(X ′, Xt) > β, we reject the
hypothesis, and conclude that two datasets are exchangeable. Here, we set
a critical value β [4] of the test, such that the null hypothesis is rejected
when p-value of the K-S test is less than 5%.

When the null hypothesis is accepted, it indicates that the new data are
not exchangeable with previous observations from the previous partition.
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Thus, we decrease the depth, and gather more samples from the input data.
If the null hypothesis is rejected, it indicates that the new data may be ex-
changeable with previous observations.5 Thus, we increase the depth in the
hierarchy, and sample fewer data points by half, compared to the previous
time step.

5 Algorithm: BayesianOnline-LEMs

The detail of Algorithm BayesianOnline-LEMs (or BO-LEMs) is described
in this section. It reduces the data size while providing approximate but ac-
curate data representation. We intentionally minimize the required records
(or logs) for the later complex data analysis. The challenging questions are
(1) how can we determine the sampling rate, and (2) how can we reduce the
data size?

1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1
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Figure 3: An illustration of the hierarchical sampling. Our algorithm collects
samples based on the depth of the hierarchy (determined by the previous
trends). When the depth is 0, there is no sampling. When the depth in-
creases by 1, it reduces the number of samples by half.

Algorithm BO-LEMs receives a sequence of measurements as an input,
and iterates processing the sequence N measurements per iteration. In each

5Even if they pass the K-S test, there is no guarantee in theory that X ′ and Xt are
exchangeable. However, verifying the exchangeability with a limited (sequence) of data is
infeasible in practice.
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Algorithm 1 BayesianOnline-LEMs

Input: sequence of measurments Din

dp ← 0, G = ∅, i← 0.
while Din(i) 6= ∅ do
i← i+ 1
for all g ∈ G do {1. Compute the depth of the LEM. }

if p(IEX(g,i)|IEX(ge)) > α then
dp← dp+ 1 {Increase depth. }

end if
end for
hi←Sample(Din(i), dp) {2. Get samples, 1 of 2dp. }
for all g ∈ G do {3. Compare with existing partitions. }

if p-value( KS(gh, hi) ) ≥ β then
(ge, gh)←(ge∪{i}, gh+hi) {Insert LEM hi to g. }
if |gh| > Smax then

(ge, gh)← (ge, trim(gh, Smax))
end if
ig ← g
break;

end if
end for
if ig = ∅ then
G← G ∪ {({i}, histi)}
dp← dp− 1 {Decrease depth. }

end if
end while
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iteration, the algorithm computes the sampling rate of the current LEM;
gathers the samples; and compares samples with existing partitions of LEMs.

Specifically, the algorithm receives a sequence of measurements Din and
the size of exchangeable measures, N . Initially, the depth dp is set to 0.
An index variable i is used to locate current measures to read from the
input data. At each step, it chooses sampled data out of the input measures
Din(i) with a rate of 1/2dp, and then converts into a value histogram histi.
The sampled data is converted, and it compares the sampled data with each
partition. If there is a partition whose histogram is close enough with the
histi, the algorithm continues until it reaches the last measurements of the
sequence.

5.1 Subroutines

5.1.1 Computing the Depth of the Current LEM

This part of the algorithm adjusts the depth (dp) of the current LEM and
accumulates the ecdf of each partition. The depth is calculated based on
the additive Markov chains (Section 4). If there is a partition, which include
a long sequence of exchangeable LEMs, there is a high probability that the
current LEM would be included in the partition, even without analyzing
it. If there is a high enough probability (> α), we increase the depth and
reduce the sampling rate by half.

5.1.2 Get Samples

Given a block of exchangeable measures, Xi, and a depth of sampling rate,
dp, this subroutine extracts samples based on the depth. When depth is 0,
it has no sampling, and uses all N measurement for the analysis. When the
depth is increased, we reduce the number of random samples by half. That
is, when the depth is k, only N/2k samples are stored for further analysis.

Figure 3 illustrates an example when N is 32 binary measures. The input
sequence includes unprocessed 32 measures (0 or 1). The depth determines
where the input sequence is processed. The figure illustrates 4 depths from
0 to 3. As the depth increases, the size of each block (to be sampled) is
exponentially increased. One measure is randomly selected per each block.
Then, we have a sequence of output measures per different depth.
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5.1.3 Comparing with Existing Partitions

In the previous steps, the algorithm estimates the exchangeability of the cur-
rent LEM. By using the collected samples, we evaluate whether the current
LEM is exchangeable with one of existing partitions. If the LEM is shown
to be exchangeable with a partition by the K-S test, the LEM is included
in the current partition. Otherwise, it will form a singleton cluster. In this
case, the sampling depth is decreased by 1.

5.2 Convergence Analysis

We show next that the algorithm BO-LEMs reduces the sampling size ex-
ponentially with a high probability.

Theorem 1 Given a sequence of exchangeable LEMs X1, · · · , Xn such that
IEX(X1, X2), · · · , IEX(Xn−1, Xn), the depth (dp) of BO-LEMs reaches maxDepth
in n steps with probability,

∑
i=1,··· ,n′

(
n

i

)
αn−i(a− β)i, where n′ −

⌈
(n−maxDepth)

2

⌉

As an example, let β, n and maxDepth be 0.95, 20 and 10. Then, the
probability is 0.9997.

5.3 Computational Complexity

Here, we let N be the length of the sequence |Din|; n be the size of LEM;
k be the maximum partitions that the algorithm holds; and Smax be the
maximum number of samples. The computational complexity of the BO-
LEMs is

O

(
N +

N

n

(
n log n+ k ·min

(
2n+

N

n
, Smax

)))
.

The first term describes that the algorithm needs to read all the measures in
the sequence O(Din) at least once. There are O(Nn ) iterations. The incoming
LEM needs to be sorted O(n log n) for the K-S test which compare the LEM
with one of O(k) partitions. Once the incoming LEM and each partition
are sorted, the comparison takes only linear time which is bounded by the
maximum size of each partition, min(O(2n+ N

n ), Smax).

4|dprev| =
∑

h=histp
|h|
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6 Application: Scalable Gaussian Processes

Streaming data patterns can change from one flow to another. Here, we
propose a new Gaussian process to handle statistical dynamic models on
LEMs.

6.1 Gaussian Process

A Gaussian process (GP) is a stochastic process Xt (t ∈ T ), for which any
finite linear combination of samples has a multivariate Gaussian distribution.
GPs are popular models for nonparametric Bayesian, and can be considered
as a nonparametric prior over a function space.

(a) (b) 

Figure 4: Two GPs with different kernel parameters given the same ob-
servations, network throughput in time. Every red dot represents a single
tranfer at a particular time and a rate. The blue line is the means over the
observations, and gray regions represents the variances.

Given a finite sampling of the time domain, the corresponding vector of
function values f are distributed to a multivariate Gaussian with mean 0
and covariance matrix KGP : f ∼ N (0,KGP ). where KGP is determined by
a kernel function. kGP : [KGP ]i,j = kGP (xi, xj). One of the typical kernel
functions has the following form:

kGP (xi, xj) = v0exp

(
−‖xi − xj‖

2

λ

)
+ v1.

This shows that the kernel adjusts the covariance of two time points xi and
xj based on the L2 norm of the time points. That is, if two time points are
far apart, the two random measures at the points f(xi) and f(xj) have a
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small covariance.6

6.2 Kernel Function on LEMs

The key parameter of Gaussian processes is the kernel function kGP (xi, xj)
that determines the covariance between two random variables. It shows
that variances of two random variables in an LEM are identical, and their
covariance is also the same with the variables.

Remark Given two random variables x and x′ in an LEM Xi, let σ2
x and

σ′2x be the variances of x and x′ and let σ(x, x′) be the covariance. Then, σ2
x

=σ′2x =σ(x, x′).

Remark Given random variables x, x′ ∈ Xi and x′′ ∈ Xj . Then, σ(x, x′′)=σ(x′, x′′).
The covariance between two random variables is determined by the LEMs
where the random variables are included in:

kGP (x ∈ Xi, x
′ ∈ Xj) = v0 · exp

(
‖Xi −Xj‖2

λ

)
+ v1.

7 Experiments

7.1 NetFlow Data in ESnet

We applied the BO-LEMs algorithm on ESnet traffic information. ESnet is
a high-speed scientific network managed by the Department of Energy. We
receive network traffic data from September 2012 to November 2012.7 The
network traffic data is composed of start time, end time, port and size of
individual transfers during the time span. We analyze the traffic pattern for
6 backbone network routers (RTs) from RT1 to RT6, which provide NetFlow
logs Claise [2004].

7.2 An Exchangeability Test

Given the NetFlow data, we need to determine that the size of LEMs.
Here, we provide empirical evaluations of exchangeability of the measures in
streaming data. As a reference, we prepare artificial data points which fol-
lows linear Gaussian as shown in Figure 5a. We generate 500k data points

6v1 > 0, so that K is positive definite.
7The data is provided by staff at the Lawrence Berkeley National Laboratory on our

request.
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from the following linear Gaussian equation, y = 0.001 · x + 2 ∗ eNormal
where eNormal N (0, 1). Figure 5a shows that the points follows a linear
trend. However, when it is examined locally, it is not clear to see the linear
trends because of the Gaussian noise. Note that, the coefficient, 0.001, is
small compared to the coefficient, 2, of the Gaussian noise. Figure 5b shows
sample data points from Netflow dataset.

We measure the exchangeability of the following steps: (1) choosing a
size of LEM (N); (2) randomly selecting LEMs of the size N; (3) ordering
each LEM and writing down the ranks of the values at each location in LEM;
and (4) after iterating the steps (2) and (3), computing the mean value of
ranking at each location. Suppose that, N is 4, and we randomly select 2
LEMs, X1= ( 0.1, 0.5, 0.3, 0.2 ) and X2 ( 0.3, 0.2, 0.4, 0.5 ). Rakings of
X1 and X2 at each location are (1, 4, 3, 2) and (2, 1, 3, 4), respectively.
Thus, mean values are (1.5, 2.5, 3, 3). When LEMs with size 4 are in fact
exchangeable, after an enough number of iterations, the mean values should
be (2.5, 2.5, 2.5, 2.5). If rankings at some locations are biased, it is a strong
indication that the LEMs with size N are not exchangeable.

Given two datasets, we gather 2000 samples and conduct the empiri-
cal evaluation on the two datasets. Figure 5 presents the results. As we
expected, when N is smaller than 64, the both data sets indicate strong ex-
changeability. When N is larger than 1024, the linear Gaussian data starts
to present deviations which strongly indicate that the locations at the be-
ginning in a large LEM have lower rankings than the locations at the end.
When N is even larger, it clearly shows that the LEMs are not exchangeable.
Meanwhile, in the Netflow data, LEMs with size 1024 indicates relatively
strong exchangeability. However, when N becomes larger (N=116384), the
rankings start to deviate. In intuition, it is reasonable because 1024 network
transfers are occurred less than a minute in most cases.

Furthermore, we quantify the exchangeability of the two data. In theory,
if LEMs with size N are exchangeable, the ranking of a particular location
should follow the discrete uniform distribution [1,N]. Based on the Central
Limit Theorem, we can find a confidence interval (99$) of the mean value
of 2000 samples for different LEM sizes. In Table 1, we report the ratio, the
number of outliers, locations beyond the 99% confidence interval, divided
by N . When the ratio is larger than 1%, it indicates that the LEMs are not
exchangeable in theory. Although, the Netflow data shows some deviations
for larger N , it maintains relatively small number of outliers. Thus, we con-
sider that LEMs are approximately exchangeable. 8 In the linear Gaussian

8Although we may need to consider the error of the Central Limit Theorem for small
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(a) The exchangeability of the linear Gaussian data with different sizes of n.

	  

(b) The exchangeability of netflow data with different sizes of n.

Figure 5: The empirical exchangeability of the two data sets for different
LEM sizes N . The ratio is the number of outliers divided by N .

data, it is clear that the LEM are not exchangeable when N is larger than
64.

7.3 Data Reduction by BO-LEMs

The input to the BO-LEMs algorithm is a set of sequences (of network trans-
fers) for routers. The BO-LEMs algorithm computes the required samples
of each LEM block to represent the underlying distribution correctly. Here,
we set the size of block N to be 1024. When the algorithm finds that a long
sequence of measures are sampled from the same distribution, the sampling

numbers of samples, an exact evaluation of the exchangeability is the subject of future
work.
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N=	  4	   N	  =	  64	   N	  =	  1024	   N	  =	  16384	  

(a) The exchangeability of the linear Gaussian data with different sizes of N.

N=	  4	   N	  =	  64	   N	  =	  1024	   N	  =	  116384	  

(b) The exchangeability of netflow data with different sizes of N.

sizes are reduced by half, that is 512, 256, · · · , 32 (the minimum number
of samples). Figure 6 (a) and (b) respectively illustrate the changes of the
required samples over time from the routers labeled ‘RT5’ and ‘RT2’. The
sample sizes reflects the different characteristics of two routers in different
time steps. In general, the ‘RT5’ router requires less samples than the ‘RT2’
router. The red lines represent how the required samples change over time.
As a reference, we plot the blue line, which represents sizes of input LEMs.
The x axes of the figures are the id number of LEM ordered by incoming
time. The y axis is the number of samples.

Table 2 presents data reduction rates for 6 routers.

8 Conclusions and future work

In this paper, we present new data reduction models, Locally Exchange-
able Measures (LEMs) and a dynamic sampling algorithm, Bayesian-Online
LEMs (BO-LEM). As a running example and an application, we applied
the BO-LEM algorithm to a high-speed network dedicated to scientific data
transfers. We shows that our algorithm can reduce the number of required
samples by 66% while achieving accurate data analysis. The LEMs and the
BO-LEM algorithm are used to build efficient relational Gaussian process.

We have looked at data comes from a source that varies greatly - net-
work transfer. In this case, we achieved moderate data reductions, but with
high accuracy. We worked with this data because we wanted to target a
challenging problem. We believe that other sources such as environmental
data from sensors (e.g., temperature) which do not vary dramatically, will
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N Netflow Linear Gaussian

2 0 0
4 0 0
8 0 0

16 0 0
32 0 0
64 3.13 6.25

128 1.56 4.69
256 1.17 17.19
512 1.36 45.7

1024 1.66 69.82
2048 1.12 84.57
4096 1.59 92.53
8192 1.55 95.95

16384 2.32 96.74
32768 5.81 96.67

Table 1: The exchangeability test of two datasets.

have much higher data reduction while still keeping accuracy. We plan to
apply our techniques to such data sources in the future.

Another possibility for future research is to modify the parameters of our
algorithms dynamically as we get more and more data over time and can
see the longer term trends (beyond just looking at the close neighborhood).
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